Control Parameters in Self-adaptive Differential Evolution

نویسندگان

  • Janez Brest
  • Viljem Žumer
  • Mirjam Sepesy Maučec
چکیده

Abstract In this paper we present experimental results to show deep view on how selfadaptive mechanism works in differential evolution algorithm. The results of the self-adaptive differential evolution algorithm were evaluated on the set of 24 benchmark functions provided for the CEC2006 special session on constrained real parameter optimization. In this paper we especially focus on how the control parameters are being changed during the evolutionary process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

A comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems

Differential Evolution (DE) is a population-based stochastic global optimization technique that requires the adjustment of a very few parameters in order to produce results. However, the control parameters involved in DE are highly dependent on the optimization problem; in practice, their fine-tuning is not always an easy task. The self-adaptive differential evolution (SADE) variants are those ...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Self-adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization

In this Chapter we present the modification of a Differential Evolution algorithm to solve constrained optimization problems. The changes include a deterministic and a self-adaptive parameter control in two of the Differential Evolution parameters and also in two parameters related with the constraint-handling mechanism. The proposed approach is extensively tested by using a set of well-known t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006